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Abstract The Lie group of point transformations, which leave the equations for a
simplified model of one dimensional ideal gas in magnetogasdynamics invariant, are
used to obtain some exact solutions for the governing system of hyperbolic partial
differential equations (PDEs). Similarity variables which reduces the governing system
of PDEs into system of ordinary differential equations (ODEs) are determined through
the transformations. The resulting ODEs are solved analytically to obtain some exact
solutions that exhibits space-time dependence. Further, we study the propagation of
weak discontinuity through a state characterized by one of the solutions.

Keywords Lie group analysis · Exact solution · Weak discontinuity

1 Introduction

In the recent past, analysis of magnetogasdynamics has been the subject of great
interest both from mathematical and physical point of view due to it’s applications
in variety of fields such as astrophysics, nuclear science, engineering physics and
studies of magnetogasdynamic effects in problems where chemical reaction plays an
important role such as propagation and structure of detonation waves; flows behind
detonations; ionization in shocks and detonations etc. As a discipline, magnetogasdy-
namics bring together a variety of equations of motion for a chemically reacting gas in
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the flow phenomena. A mathematical model can be formulated for such flow of inviscid
thermally conducting/ non-conducting, compressible/incompressible, ideal/non-ideal
fluid of infinite electrical conductivity in the presence of a magnetic field. Magnetogas-
dynamics, the science concerned with the mutual interaction between electromagnetic
field and flow of electrically conducting gas, offers promising advances in flow con-
trol and propulsion of future hypersonic vehicles. Since the full governing system for
magnetogasdynamics is highly nonlinear and complicated, it is necessary to study
the various simplified models. Today engineering and science researchers routinely
confront problems in gaining a better understanding of such mathematical models
formulated in terms of nonlinear differential equations. The exact solutions of such
system of partial differential equations (PDEs) provide useful information towards
our understanding of the complex physical phenomena involved in it. Besides, its own
intrinsic interest, these explicit exact solutions may be used for modeling, designing,
testing numerical procedure for solving special initial and/or boundary value prob-
lems. Indeed for nonlinear systems, involving discontinuities such as shocks, we do
not have the luxury of complete exact solutions, and for analytical work we have to rely
on some approximate analytical or numerical methods. Lie symmetry analysis which
was developed by Sophius Lie [1–3], is one of the extensively used methods to find
point transformations which leaves the given PDEs invariant, and allow to determine
some particular as well as exact solutions for the governing system of PDEs. Usually,
one can determine the corresponding similarity solutions, by solving the over deter-
mined system obtained from the original system, from which classes of exact solutions
may be recovered. Several researchers has illustrated the advantages of applications of
Lie group analysis for investigating nonlinear differential equations [4–6]. A further
contributions of this technique may be found in [7,8]. Similarity solutions to the system
of PDEs governing three-dimensional Euler equations using Lie group of transforma-
tions can be seen in [9]. The work in [10] accounts symmetry reduction, group invariant
solutions and some exact solutions of (2+1)-dimensional Jaulent–Miodek equation.
Propagation of weak discontinuities in one-dimensional ideal isentropic magnetogas-
dynamics can be found in [11]. The interaction of a weak discontinuity wave with the
elementary waves of the Riemann problem for the one-dimensional Euler equations
governing the flow of ideal polytropic gases is investigated in [12]. Reductions of
Euler equations for incompressible fluids in two dimensions were obtained in [13],
whilst evolution of weak discontinuities in a two-dimensional steady supersonic flow
of a non-ideal radiating gas is studied in [14].

In this paper, the equations for a simplified model of one dimensional ideal gas
in magnetogasdynamics is considered. Lie group analysis is performed and certain
classes of exact solutions to the governing system of PDEs are obtained. With the
exact solution in hand, the behavior of evolution of weak discontinuity is studied.

2 Group analysis

The one dimensional adiabatic flow of an ideal, inviscid, perfectly conducting com-
pressible fluid subject to transverse magnetic field (in Lagrangian coordinates) can be
written as follows [15]:
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τt − ux = 0,

ut + px − k2

μτ 3 τx = 0, (1)

pt + γ p

τ
ux = 0,

where τ , u and p are the specific volume, the velocity and the pressure. μ is the
magnetic permeability, k is a positive constant where γ is the adiabatic gas constant
with 1 < γ < 3 for most of the gases. The independent variables t and x denote time
and space respectively. We investigate the most general Lie group of transformations
which leaves the governing system of equations (1) invariant. Considering the Lie
group of transformations with independent variables t and x : and dependent variables
τ , u and p for the problem and following the straightforward analysis mentioned in
[3,5], we obtain the set of infinitesimal transformations as

φ1 = α1 + α2t, φ2 = α3 + α4x, ψ1 = 2(α2 − α4)τ

3
,

ψ2 = α5 + (α2 − α4)u

3
, ψ3 = 4(α2 − α4)p

3
. (2)

where α1, α2, α3, α4 and α5 are arbitrary constants. The similarity variables, which
allows us to reduce the given system of PDEs to the system of ordinary differen-
tial equations (ODEs), can be obtained from the characteristic equations considering
different cases as given below:

dt

φ1
= dx

φ2
= dρ

ψ1
= du

ψ2
= dp

ψ3
. (3)

i.e.,

dt

α1 + α2t
= dx

α3 + α4x
= dτ

2(α2 − α4)τ

3

= du

α5 + (α2 − α4)u

3

= dp
4(α2 − α4)p

3

.

Case A: α3 �= 0, α4 �= 0 and α4 = α2.
This case yields the similarity and dependent variables as follows:

ξ = (α3 + α2x)−1(α1 + α2t), τ = R, u = ln

(
(α1 + α2t)

α5
α2 U

)
, p = P.

(4)

Substitution of the variables from (4) in (1) we obtain the reduced system of ODEs as
follows

α2
d R

dξ
+ α2

U
ξ

dU

dξ
− α5 = 0,
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α2

U

dU

dξ
− α2ξ

d P

dξ
+ k2α2

μR3 ξ
d R

dξ
= 0, (5)

α2
d P

dξ
+ γ P

R

(
α5 − α2

U
ξ

dU

dξ

)
= 0.

The system of ODEs (5) are solved for γ = 2 and obtained as

R = α5

α2
ξ, U = C1, P = − k2α2

2

2μα2
5

1

ξ2 , (6)

where C1 is an integration constant. Further (4) and (6) together produces the solution
for (1) as below

R = α5(α1 + α2t)

α2(α3 + α2x)
, U = ln

(
(α1 + α2t)

α5
α2 C1

)
, P = − k2α2

2(α3 + α2x)2

2μα2
5(α1 + α2t)2

.

Case B: α3 �= 0 and α4 = 0.
The similarity variable and the dependent variables associated to this case are

ξ = (α1 + α2t)−1, τ = R exp

(
2α2x

3α3

)
, u = −U exp

(−α2x

3α3

)
+ 3α5

α2
,

p = P exp

(−4α2x

3α3

)
, (7)

Usage of (7) in (1) yields the reduced system of ODEs as follows

−α2ξ
2 d R

dξ
+ α2ξ

α3

dU

dξ
− α2

3α3
U = 0,

α2ξ
2 dU

dξ
+ α2ξ

α3

d P

dξ
− 4α2

3α3
P − k2

μR3

(
2α2

3α3
R + α2ξ

α3

d R

dξ

)
= 0, (8)

α2ξ
2 d P

dξ
− γ P

R

(
α2ξ

α3

dU

dξ
− α2

3α3
U

)
= 0.

Assuming U = 3α3 and γ = 1, we obtain the solution of (8) as

R = 1

ξ
, U = 3α3, P = −k2

2μ
ξ2,

which in turn gives the solution of (1) as below

τ = (α1 + α2t) exp

(−α2x

3α3

)
, u = −3α3 exp

(−α2x

3α3

)
+ 3α5

α2
,

p = − k2

2μ
(α1 + α2t)−2 exp

(
2α2x

3α3

)
.
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Case C: α3 = 0 and α4 = 0.
For this case the new similarity variable and the dependent variables are

ξ = x, τ = R (α1 + α2t)
2
3 , u = −U (α1 + α2t)−

1
3 + 3α5

α2
,

p = P (α1 + α2t)−
4
3 , (9)

The variables in (9) are used in (1), obtained the reduced system of ODEs as follows

−dU

dξ
+ 2α2

3
R = 0,

d P

dξ
− k2

μR3

d R

dξ
+ α2

3
U = 0, (10)

γ P

R

dU

dξ
− 4α2

3
P = 0.

We can obtain the solution of (10) by assuming R = 3
2α2

and γ = 2 as

R = 3

2α2
, U = ξ, P = −α2

6
ξ2,

which in turn gives the solution of (1) as below

τ = 3

2α2
(α1 + α2t)

2
3 , u = x(α1 + α2t)−

1
3 + 3α5

α2
,

p = α2

6
x2(α1 + α2t)−

4
3 . (11)

Case D: α1 �= 0 and α2 �= 0.
The similarity variable and new dependent variables are

ξ = (α3 + α4x)(α1 + α2t)
α4
α1 , τ = R (α1 + α2t)

2(α2−α4)
3α2 ,

u = U (α1 + α2t)
(α4−α2)

3α2 − 3α5

α4 − α2
, p = P (α1 + α2t)

4(α4−α2)
3α2 . (12)

Using (12) in (1), we obtain the following reduced system of ODEs

α4ξ
d R

dξ
− α4

dU

dξ
+ 2(α2 − α4)

3
R = 0,

α4ξ
dU

dξ
+ α4

d P

dξ
− α4k2

R3

d R

dξ
+ (α2 − α4)

3
U = 0,

α4ξ
d P

dξ
+ α4γ P

R

dU

dξ
+ 4(α2 − α4)

3
P = 0,
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which on solving for γ = 2, R = α4 and α2 = −2α4, we obtain the solution as

U = −2α4ξ, P = C2, (13)

where C2 is an arbitrary integration constant. Combining (13) and (12) produces
solution of (1) as

τ = α4(α1 + α2t), u = −2α4(α3 + α4x)+ α5

α4
, p = C2(α1 + α2t)−2.

Case E: α1 = 0 and α2 = 0.
For this case we obtained the similarity variable and the dependent variables as

ξ = t, τ = R (α3 + α4x)−
2
3 , u = U (α3 + α4x)

1
3 − 3α5

α4
,

p = P (α3 + α4x)
4
3 ,

which reduces (1) to system of ODEs as

d R

dξ
+ α4

3
U = 0,

dU

dξ
+ 4α4

3
P + 2α4k2

3μR2 = 0, (14)

d P

dξ
+ γα4 P

3R
U = 0.

Further, for U = A = constant and γ = 2 we obtain the solution of (14) as

R = Aα4ξ

3
+ C3, U = A P = −9k2

2μ
(3C3 + Aα4ξ)

−2,

where C3 is an arbitrary integration constant. The corresponding solution of (1) is give
as

τ = 1

3
(Aα4t + 3C3)(α3 + α4x)−

2
3 , u = A(α3 + α4x)

1
3 − 3α5

α4
,

p = −9k2

2μ
(Aα4t + 3C3)

−2(α3 + α4x)
4
3 .

Case F: α2 = 0 and α4 = 0.
The similarity variable and the dependent variables are

ξ = x − α3

α1
t, τ = R, u = α5

α1
t + U, p = P. (15)
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Usage of (15) in (1) yields the reduced system of ODEs as follows

−α3

α1

d R

dξ
− dU

dξ
= 0,

−α3

α1

dU

dξ
+ d P

dξ
− k2

μR3

d R

dξ
+ α5

α1
= 0, (16)

−α3

α1

d P

dξ
+ γ P

R

dU

dξ
= 0.

Assuming α3 = α5 and γ = 2, we obtain the solution of (16) as

R = −α1

α3
ξ, U = ξ, P = −α2

3k2

2μα2
1

ξ2,

which in turn gives the solution of (1) as below

τ =
(

t − α1

α3
x

)
, u = x, p = − k2

2μ

(
α1

α3
x − t

)−2

.

3 Evolution of weak discontinuity

The governing hyperbolic system (1) can be written in the matrix form as:

Vt + MVx = 0, (17)

where V = (τ, u, p)T is column vector with superscript T denoting transposition,
while M is a matrix with elements M11 = M22 = M33 = M13 = M31 = 0,
M12 = −1, M21 = − k2

μτ 3 , M23 = 1, M32 = γ p
τ

. The matrix M has the eigenvalues

λ1 = −w, λ2 = 0, λ3 = w

where w =
√

k2

μτ 3 + γ p
τ

with the corresponding left and right eigenvectors

l1 =
(

k2

μτ 3 , w,−1

)
, r1 =

(
−1,−w, γ p

τ

)T
,

l2 =
(γ p

τ
, 0, 1

)
, r2 =

(
1, 0,

k2

μτ 3

)T

,

l3 =
(

− k2

μτ 3 , w, 1

)
, r3 =

(
−1, w,

γ p

τ

)T
. (18)

Let us consider that the weak discontinuity is propagating along the characteristic
curve determined by dx

dt = λ3 originating from the point (x0, t0). Then the transport
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Fig. 1 Behavior of β̃ with t̃ for β0 > 0

equation for the weak discontinuity across the third characteristic of a hyperbolic
system of equations is given by [16]:

l3

(
dΛ

dt
+ (Vx +Λ)(∇λ3)Λ

)
+ ((∇l3)Λ)

T dV

dt
+ (l3Λ)((∇λ3)Vx + (λ3)x ) = 0,

(19)

where Λ, denotes the jump in Vx across the weak discontinuity, is collinear to right
eigenvector r3, i.e Λ = β(t)r3 with β(t) is the amplitude of the weak discontinuity

and ∇ =
(
∂
∂τ
, ∂
∂u ,

∂
∂p

)
. Substitution of (11) and (18) along with Λ, λ3 in (19) gives

the following Bernoulli type of equation for the amplitude β(t)

dβ

dt
+ Ψ1(x, t)β2 + Ψ2(x, t)β = 0,

dx

dt
= w, (20)

where

Ψ1(x, t) = −√
2α2

(
8α2k2 − γ (γ + 1)μx2

)
√

3
√
μ(α1 + α2t)

5
3
(
8α2k2 − 3γμx2

) ,

Ψ2(x, t) = 2α2
√
μx√

3(α1 + α2t)
√

8α2k2 − 3γμx2
+

(
16α2k2 − γ (2γ + 3)μx2

)
2(α1 + α2t)

1
3
(
8α2k2 − 3γμx2

) .

The solution of (20) can be written in quadrature form as β(t) = β0 S(t)
1+β0 Q(t)

where S(t) = exp
(∫ t

t0
−Ψ2(x(s), s)ds

)
and Q(t) = ∫ t

t0
Ψ1(x(t

′
), t

′
)exp(∫ t

′
t0

−Ψ2(x(s), s)ds

)
dt

′
. For the functions Ψ1 and Ψ2, given as above, we find that

both the integrals S(t) and Q(t) are finite and continuous on [t0,∞). From Fig. 1 it
is obvious that, for β0 > 0, which corresponds to the expansion wave, as t → ∞ the
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Fig. 2 Behavior of β̃ with t̃ for β0 < 0 and |β0| < βc
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Fig. 3 Behavior of β̃ with t̃ for β0 < 0 and |β0| ≥ βc

wave decays and dies out eventually. If β0 < 0, then there exist a positive quantity
βc > 0 such that |β0| < βc, the wave decays and dies out and the situation is illustrated
in Fig. 2. However, for β0 < 0 and |β0| ≥ βc, there exist a finite time tc given by
the solution of Q(tc) = 1

|β0| such that |βc| → ∞ as t → tc; this means that when the
amplitude of the incident discontinuity exceeds the critical value in magnitude, the
wave culminates into a shock in a finite time which can be observed in Fig. 3.

4 Conclusions

The Lie symmetry groups are used to transform the governing system of PDEs to a sys-
tem of ODEs. Further, the reduced system of ODEs are solved and some exact solutions
are derived. These exact solutions to mathematical equations play an important role
in the proper understanding of qualitative features of many phenomena and processes
in various areas of natural science. Exact solutions of nonlinear differential equations
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graphically demonstrate and allow unraveling the mechanisms of many complex non-
linear phenomena such as spatial localization of transfer processes, multiplicity or
absence of steady states under various conditions, existence of peaking regimes, and
many others. Furthermore, simple solutions are often used in teaching many courses
as specific examples illustrating basic tenets of a theory that admit mathematical for-
mulation such as heat and mass transfer theory, hydrodynamics, gas dynamics, wave
theory and other fields. Even those special exact solutions that do not have a clear
physical meaning can be used as test problems to verify the consistency and estimate
errors of various numerical, asymptotic, and approximate analytical methods. Further-
more, the behavior of weak discontinuity has been discussed across the solution curve
which is well illustrated by the Fig. 1, 2, 3. For β0 > 0 or β0 < 0 and |β0| < βc, in
both the cases the wave decays and dies out eventually, which has been well observed
in Figs. 1 and 2. For β0 < 0 and |β0| ≥ βc shows the appearance of shock and the
situation is observed in Fig. 3.
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